Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
A. V. Yatsenko, ${ }^{a *}$ K. A.

Paseshnichenko ${ }^{\text {a }}$ and H. Schenk ${ }^{\text {b }}$
${ }^{\text {a }}$ Chemistry Department, Moscow State University, 119899 Moscow, Russia, and
${ }^{\text {b }}$ Laboratory for Crystallography, University of Amsterdam, Nieuwe Achtergracht 166, Amsterdam 1018 WV, The Netherlands

Correspondence e-mail:
yatsenko@biocryst.phys.msu.su

Key indicators

Powder X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.027$
$w R$ factor $=0.036$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Chloro-2-(phenyldiazenyl)phenol from powder data: a form stable at room temperature

The low-temperature form of the title compound, $\mathrm{C}_{12} \mathrm{H}_{9}$ $\mathrm{ClN}_{2} \mathrm{O}$, (I), was obtained from an ethanol solution of (I) at room temperature. The molecule of (I) is almost planar; the dihedral angle formed by the planes of the phenyl rings is 5.0 (4) ${ }^{\circ}$. Translationally related molecules form stacks with an interplanar separation of 3.32 (1) \AA.

Comment

The hydroxy group of the title compound, (I), forms an intramolecular hydrogen bond with the azo linkage $[\mathrm{O} 1 \cdots \mathrm{~N} 8=2.622(12) \AA$], thus precluding the formation of strong intermolecular hydrogen bonds.

(I)

The molecules form stacks along [010]; the angle between the normal to the molecular plane and the stack axis is $44.0(1)^{\circ}$. Neighbouring molecules within the stack overlap each other in essentially the same manner as in the hightemperature form prepared from the melt (Yatsenko et al., 2001), but the two polymorphs differ in the way in which adjacent stacks are arranged with respect to each other. In the room-temperature form, neighbouring molecules belonging to different stacks are crossed (Fig. 1), whereas in the hightemperature form they are arranged side-by-side. Two relatively short intermolecular contacts are present in this structure: the side-by-side contact $\mathrm{H} 5 \cdots \mathrm{H} 5(1-x,-1-y,-z)$ ($2.12 \AA$), and the 3.03 (1) \AA contact between the phenolic-O atoms. However, this contact is not a hydrogen bond since the $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1\left(\frac{1}{2}-x, y-\frac{1}{2},-\frac{1}{2}-z\right)$ angle is 110°.

Experimental

Compound (I) was prepared by the reaction of phenyldiazonium chloride with p-chlorophenol according to the established procedure of Socha \& Vecera (1969) and recrystallized from ethanol.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}$
$M_{r}=232.66$
Monoclinic, $P 2_{1_{1}} / n$
$a=19.706$ (6) \AA
$b=4.614$ (2) \AA
$c=12.308$ (4) \AA
$\beta=104.70(3)^{\circ}$
$V=1082.5$ (7) \AA^{3}
$Z=4$
$D_{x}=1.428 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 26
reflections
$\theta=3.8-15.6^{\circ}$
$\mu=2.95 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Yellow
Specimen shape: flat sheet
$25 \times 25 \times 2.0 \mathrm{~mm}$
Particle morphology: needle

Received 14 September 2001

Accepted 31 October 2001
Online 10 November 2001

Figure 1
Stacking arrangement adopted by (I).

Data collection

DRON-3M diffractometer
(Burevestnik, Russia)
Specimen mounting: pressed as a thin layer in the specimen holder
Specimen mounted in reflection mode

> Absorption correction: none
> $h=0 \rightarrow 14$
> $k=0 \rightarrow 3$
> $l=-9 \rightarrow 9$
> $2 \theta_{\min }=5.0,2 \theta_{\max }=70.0^{\circ}$
> Increment in $2 \theta=0.02^{\circ}$

Refinement

$R_{p}=0.027$
$R_{\text {wp }}=0.036$
$R_{\text {exp }}=0.033$
$S=1.09$
$2 \theta_{\text {min }}=7.0,2 \theta_{\text {max }}=70.0^{\circ}$
Wavelength of incident radiation: 1.5418 A

Excluded region(s): 5.00-6.98 ${ }^{\circ}$
Profile function: split-type pseudoVoigt
115 parameters
H -atom parameters not refined
$(\Delta / \sigma)_{\max }=0.034$
Preferred orientation correction: Spherical harmonics (Ahtee et al., 1989)

The monoclinic cell dimensions were determined with TREOR90 (Werner et al., 1985) and refined to $M_{20}=20$ and $F=46(0.0072,71)$ using the first 26 peak positions. The initial molecular model was built with MOPAC7.0 (Stewart, 1993) on the PM3 level (Stewart, 1989). The position and orientation of the molecule were determined using the grid-search procedure (Chernyshev \& Schenk, 1998). The X-ray diffraction profile and the difference between the measured and calculated profiles after Rietveld refinement are shown in Fig. 2, final $R_{B}=0.062$. The Cl atom was refined anisotropically; C, N and O atoms were refined isotropically and were gathered together into groups with a common $U_{\text {iso }}$ parameter for each group. H atoms were

Figure 2
The Rietveld plot showing the observed and difference profiles. The reflection positions are shown above the difference profile. The highangle area is magnified by a factor of ten.
placed in geometrically calculated positions and their isotropic displacement parameters were fixed at $B=6.0 \AA^{2}$. The planarity of the phenyl groups was restrained. The anisotropy of diffraction-line broadening was approximated by a quartic form in $h k l$ (Popa, 1998). The standard uncertainties obtained from the Rietveld refinement were corrected for the serial correlation effects (Bérar \& Lelann, 1991).

Data collection: local program; cell refinement: LSPAID (Visser, 1986); program(s) used to solve structure: MRIA (Zlokazov \& Chernyshev, 1992); program(s) used to refine structure: MRIA; molecular graphics: PLUTON (Spek, 1992); software used to prepare material for publication: PARST (Nardelli, 1983).

This work has been supported by the Netherlands Organization for Scientific Research (NWO).

References

Ahtee, M., Nurmela, M., Suortti, P. \& Jarvinen, M. (1989). J. Appl. Cryst. 22, 261-268.
Bérar, J.-F. \& Lelann, P. (1991). J. Appl. Cryst. 24, 1-5.
Chernyshev, V. V. \& Schenk, H. (1998). Z. Kristallogr. 213, 1-3.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Popa, N. C. (1998). J. Appl. Cryst. 31, 176-180.
Socha, J. \& Vecera, M. (1969). Collect. Czech. Chem. Commun. 34, 3740-3745.
Spek, A. L. (1992). PLUTON. University of Utrecht, The Netherlands.
Stewart, J. J. P. (1989). J. Comput. Chem. 10, 209-220.
Stewart, J. J. P. (1993). MOPAC7.0. QCPE Program No. 455. Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, IN, USA.
Visser, J. W. (1986). Powder Diffr. 1, 66-76.
Werner, P.-E., Eriksson, L. \& Westdahl, M. (1985). J. Appl. Cryst. 18, 367-370.
Yatsenko, A. V., Paseshnichenko, K. A. \& Schenk, H. (2001). Acta Cryst. E57, o1156-o1157.
Zlokazov, V. B. \& Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447-451.

